III

Instructor: Dr. Rola Alseidi	Philadelphia University	Academic Year: 2021/2022. Semester: First.
	Faculty/College of Science	Date: 29/11/2021.
	Department of Basic Science amd Mathematics	
	Midterm Exam	Course : General Topology. Duration of Exam: 75 minutes.
Name:		

- The exam consists of 3 pages. Make sure you have all of them.

1. (5 points) Let \mathbb{R} be the set of real numbers and let

$$
\tau_{c o c}=\left\{G \subseteq \mathbb{R}: G^{c}=\mathbb{R} \backslash G \text { is countable }\right\} \cup \phi
$$

Show that $\tau_{c o c}$ is a topology on \mathbb{R}.
2. (5 points) Let $X=\{a, b, c\}$ and let $\tau=\{X, \phi,\{a\},\{a, b\},\{a, c\}\}$ be a topology on X. Find (Show the details of your work)
(a) The closed subsets of (X, τ)
(b) $\overline{\{a\}}$
(c) $\{b, c\}^{0}$
(d) $B d(\{b, c\})$
(e) $\operatorname{Ext}(\{b, c\})$
3. (12 points) Circle True or False. Read each statement carefully before answering and justify your answer
(a) True False Let τ and τ^{\prime} be two topologies on the same set X. Then $\tau \cup \tau^{\prime}$ is a topology on X.
(b) True

False An arbitrary intersection of open sets in a topological space is open.
(c) True Fals In the topological space $\left(X, \tau_{d i s}\right)$ the only dense set is X itself.
(d) True
(e) True
(f) True
(g) True
(h) True

The interval $[1,3)$ is open in the topological space $\left(X, \tau_{u}\right)$.
4. (3 points) Let $X=\{a, b, c, d\}$ and $Y=\{1,2,3,4\}$. We define

$$
\tau_{y}=\{Y, \phi,\{3\},\{1,2,3\},\{3,4\}\},
$$

to be a topology on Y. Find the topology on $X,\left(\tau_{x}\right)$ induced by the topological space $\left(Y, \tau_{y}\right)$ and the following function

$$
f=\{(a, 4),(c, 3),(d, 2)(b, 3)\}
$$

Show the details of your work

5. (5 points) Let (x, τ) be a topological space, $A, B \subseteq X$. Prove the following statements :
(a) (2 points) If $A \subseteq B \Rightarrow A^{\prime} \subseteq B^{\prime}$.
(b) (3 points) If $B d(A) \cap A=\phi \Rightarrow A$ is an open set.
6. (3 points) extra question

Let

$$
\tau=\{\{n, n+1, n+2, \ldots\}: n \in \mathbb{N}\} \cup \phi
$$

be a topology on \mathbb{N}.
(a) Find the accumulation points of the set $A=\{4,13,28,37\}$.
(b) Find the closure of the set $A=\{7,24,47,85\}$.

